
NASA-CR-202422

FINAL PROGRESS REPORT
October 1996

t

//

'/7_, ¸

NASA GRANT NUMBER NCC 2-800

Rapid Assessment of Agility for Conceptual
Design Synthesis

by

Dr. Daniel J. Biezad

Principal Investigator
Cal Poly State University

(805) 756-5126

Presented to

NASA Technical Monitor:

Mr. Paul Gelhausen
NASA Ames Research Center

Moffett Field, CA. 94035-1000

October 1996

°..

111

LIST OF FIGURES

Abstract

Introduction

Simulated Airport

Landing Task

HUD Symbology

Up-and-Away Task

Computer Code

TABLE OF CONTENTS

iv

1

2

2

3

4

5

6

iv

LIST OF FIGURES

Figure Page

1 - Out the Window Scene Showing the Simulated Airport and HUD Symbology Overlay 3

2 - Target for Up-and-Away Task with HUD Overlay 4

Abstract

This project consists of designing and implementing a real-time graphical interface for a

workstation-based flight simulator. It is capable of creating a three-dimensional out-the-window

scene of the aircraft's flying environment, with extensive information about the aircraft's state

displayed in the form of a heads-up-display (IVdD) overlay. The code, wxitten in the C

programming language, makes calls to Silicon Graphics' Graphics Library (GL) to draw the

graphics primitives. Included in this report is a detailed description of the capabilities of the

code, including graphical examples, as well as a printout of the code itself.

Introduction

In order for the Aeronautical engineering student to competently analyze and design

aircraft, he must be familiar with the way aircraft fly. In other words, he must have an intuitive,

as well as mathematic, understanding of aircraft performance and, to some degree, aircraft

handling qualities. A powerful tool for this is the flight simulator. An engineer can choose a

specific set of flight conditions and maneuvers, or pilot tasks, and with the corresponding set of

stability derivatives, analyze how well the aircraft flies.

Many flight simulators work by mathematically analyzing the flight conditions and

stability derivatives, then giving a time history of important variables as output. While this

information is useful, it often fails to provide the engineer an intuitive feel for what the aircraft is

actually doing. By providing a graphical interface, such as an animated three-dimensional model

of the world outside the aircraft, the engineer can actually see the dynamic responses. He can

easily vary his inputs and rapidly and intuitively understand the effects of the changes.

Another important learning tool is the incorporation of real-time input into such a

simulator, as opposed to a batch mode operation. This feature would allow the engineer to be in

the loop, to become the pilot. In addition to flying the aircraft at the given flight conditions, the

engineer would have the ability, through the mouse, keyboard, or flight stick, of actually

changing the control inputs and immediately see the effects of his changes. In this way, the

engineer can rapidly assess both qualitatively and quantitatively how well the aircraft perfomis.

This project consists of designing and implementing a real-time graphical interface for a

workstation-based flight simulator. It is capable of creating a three-dimensional out-the-window

scene of the aircraft's flying environment, with extensive information about the aircraft's state

displayed in the form of a heads-up-display (HUD) overlay. The code, written in the C

programming language, makes calls to Silicon Graphics' Graphics Library (GL) to draw the

graphics primitives. Included in this report is a detailed description of the capabilities of the

code, including graphical examples, as well as a printout of the code itself.

Simulated Airport

As shown in Fimare I, the out-the-window scene consists of a ground plane with a grid

for visual reference, an airport, and some simple mountains in the distance. The airport is

modeled after Moffet Naval Air Station, where NASA-Ames is located, and contains its two

parallel runways, the blimp hangar, and two P-3 Orion submarine-hunter hangars. To give a

sense of scale, the blimp hangar is 300 ft wide and 1,200 ft long. The runways at Moffet are

built along a magnetic course of 320/140. Viewed from the south, the runway on the left (32L)

is 8,125 ft long and 200 ft wide. The runway on the right is 9,200 ft long and 200 ft wide.

For simplicity in setting up the landing approach task in the simulator, some artistic

license was taken, and the runways are drawn to align with magnetic north. For this reason,

runways 32L and 32R become 36L and 36R, respectively. Therefore, when lined up with the

runway in an approach from the south, the heading indicator in the simulator will read a bearing

of 360. To improve the update rate of the graphics, markings are added only to the left runway"

(36L), and the right one left blank. The markings are constructed according to the standards for

a precision-approach equipped runway, with some simulated tire marks for visual effect.

Figure1- Out theWindow SceneShowingtheSimulatedAirport andHUD SymbologyOverlay

Landing Task

To aid in the evaluation of a simulated aircraft's handling qualities, an approach to

landing is one of the available tasks for the simulator pilot. A score is determined by integrating

the squares of the distances above or below glideslope, and left or right of the runwav centerline.

To accomplish the landing task accurately, the pilot must be provided with an indication of

position relative to the desired glideslope. Offofthe approach end of runway 36L is a set of

_'telephone poles" that create a visual reference, as shown in Figure 1. The poles are arranged in

two rows. angled outward from the touch-down point to create a tapered hallway that narrows as

the aircraft approaches the runway. The poles get progressively taller away from the touch-down

point, defining a plane that is the standard 3 ° glide slope. The approach can be set up steeper, to

simulate an aircraft-carrier approach for example, by changing the glide slope angle in the input

file that controls the simulation (_!._._c_zl. da_). When the pilot is approaching the runway on

the defined glide slope, the tops of the poles will line up parallel to the horizon. If the pilot is

below glideslope, the tops of the poles will appear to angle upward. If flying above the

gtideslope, they appear to angle downward. With a little familiarization, the visual cues are

quite sensitive to vertical deviations, especially closer to touch down. The two rows also create

an additional visual cue that assists in lining up with the runway from a distance.

4

HUD Symbology

On top of the out-the-window display is a collection of sy-rnbolo_, that simulates a heads-

up-display (HUD). As shown in Figure 1 and Figure 2, in the top left corner of the screen are

digital indications of angle of attack (alpha) and dynamic pressure (q_bar), the two independent

variables that define the table look up for stability derivatives in the simulation. When the

aircraft flies outside the defined envelope of data, these values turn red, indicating to the pilot

that the current flight state is not being properly modeled. The aircraft altitude is displayed in

feet in a box on the left side of the screen, with the rate of climb in feet per minute under it. In

the box on the right side is the true airspeed in knots (nautical miles per hour), with the Mach

number shown below.

Figure 2 - Target for Up-and-Away Task with HUD Overlay

The center of the screen is dominated by the pitch ladder, which indicates the aircraft's

pitch and bank angles. The "W" shaped symbol is the "waterline," and it represents the

direction the nose of the airplane is pointed. In other words, the rung of the pitch ladder that it

lies on corresponds to the Euler angle 0, or the angle between the aircraft body axis out the nose

and the horizontal plane. The small diamond with three short lines coming out of it is the

velocitv vector, and it shows the actual direction of flight. The vertical displacement between

this symbol and the waterline is therefore the angle of attack a, and the horizontal displacement

indicates the angle of sideslip 13. Since the rungs of the pitch ladder remain alined with the

horizon,theaircraftbankangle_ is reflectedin the ladder'srotation. At thebottomcenterof the
screenis aheadingindicator,or compass,thatindicatestheEulerangle_.

In thebottomleft cornerof thewindow isa setof symbolsthat displaythecommanded
thrust,actualthrust,andthepositionsof theailerons,elevatorandrudder. Thevertical slider
farthestto the left is thethrustindicator. Thesmall trianglemovesupanddown in responseto
thethrottle inputsfrom thepilot, from 0% atthebottomto 100%at thetop. Therectangleon
theleft sideof the line representstheactualthrust,andmaylagbehindthepilot's commandsif
thesimulatedengineis modeledto taketime asit spoolsupanddown. Theothervertical slider
showstheactualpositionof theelevator,which maybedifferent from the commandedposition
ifa feedbackcontrollaw is implemented.Fora conventionalstableaircraft, full elevator
deflectiontrailing edgedown(stick forward,nosedownpitchingmoment)drivesthepointerto
thetopof the line,andvice-versa.Thehorizontalslideratthetopof this clusterindicatesthe
actualdifferentialailerondeflection,with a full left-rolling deflectiondriving thetriangleto the
left endof the line, right-rolling to therightend. Similarly, thesliderat thebottomof thecluster
indicatesactualrudderdeflection. Ruddertrailing edgefull left (noseleft yawingmoment)
drivestheslider to the left endof the line, full rightdeflectionto theright end.

Up-and-AwayTask
The"up-and-away"task,whichsimulatesanair-to-airengagement,is shownin Figure2.

The target is a cruciform shape, with a yellow light on each arm. The target moves relatively

slowly, creating a gross acquisition/low frequency tracking task for the simulator pilot. If the

target is lost from the field of view, the line drawn from the middle of the HUD to the center of

the target will indicate the direction to fly to reaquire it. The yellow lights on the cross alternate

randomly such that they illuminate one at a time, creating a faster, more demanding tracking

task. The pilot must supply inputs at higher frequencies, which may uncover flaws in the

simulated aircraft's handling qualities. The up-and-away task is designed to represent a real-

world experiment, flying behind a test aircraft with lights on the top and bottom of the vertical

tail, as well as the left and right tips of the horizontal stabilizer.

The simulator formulates a quantitative score based on the cumulative difference

between the position of the target and the direction the aircraft's nose is pointed. Instead of

modeling the up-and-away target at a three-dimensional world object, the position of the cross is

driven by a commanded pitch angle and heading angle passed from the simulation. This

eliminates the need for accurate speed and altitude control, while still providing for a

challenging tracking task that will work for any aircraft. It also eliminates the need for three-

dimensional vector operations to calculate the angular error between the aircraft's attitude and

the commanded attitude. In this manner, the cross always maintains the same distance off the

nose, and oscillates about the aircraft's current altitude.

Computer Code

This section contains the computer routines and include files that create the graphics for

the real-time flight simulation. For more extensive explanations of specific GL function calls,

re[er to the Silicon Graphics Iris-4D Series manuals, Graphics Library Pro_amming Guide and

Graphics Library Reference Manual: C Edition. At the time of this writing, copies of these

manuals are available in the Flight Simulation Lab, located in the AMDAF building on campus.

For more information, including access to the source code for the entire flight simulation,

contact Dr. Biezad at (805) 756-5126.

#lEnder AERODATA H

#define A]_RODATA H

J.'.L ¢ .k _. %__m. t- v_j •

/" visua!s.h _/

#ifndef VISUALS H

#define VISU/LLS H

_include <_I/_l _>
_inc'ude <math.h>

#inc'ude <sys/types.h>

#include <sys/time.h>

_include <sys/ipc.h>
.._clude

.._de <errno.h>

::_e color indeces are all

starting index: GRID */
" m:__cee GRASS (GRiD_I

#define

#cefine

#define

#cefine

_define

#define

_define

#define

MYRED (GRID+2

SKY (GRID+3

HUD CLR 'GRID+4

ASPHALT GRID-$

p,_rp!e! ,GRID_6]_

purple3 GRID*7,

grey0 GRID+8_
skid GRID÷9

poleclr GRID+IO)

yellow GRID+If)

/" __.=ne T_ames for graptz_¢m

Cdefine GROU_{D OBJ 1

n_define WATER LINE 3

#define PTCH [DR 4

#define HDG [CL 5

defined r_=_v_........ to the

objects */

#define STATIC OBJ 6

#define MTN RANGE 7

#define STRIPES 8

#define POLES 9

#define FPM !0

#define H_NGAR ii

#define BLIMP 12

#define TARGET 13

#define LIGHT 1 14

#define LIGHT-2 15

#define LIGHT--3 16

#define LIGHT--4 17

/* Function prototypes */

void startgraphics (int* win orig x, int* win orig y, int* width,

int* height, int* gridcol_ double *glideslope);

void make world objects(double *glideslope);

void make-HUD objects();

void drawframe (double* X, double* Y, double* Z, double* psi, double* theta,

double* phi, double *V, double* zdot, double* alpha,

double* beta, double *qbar, int* AccuracyFlag,

int* dio, float* del psi, float* del theta, int* light,

float *control defs);

void stopgraphics (void);

void my viewing transform(double* x, double* y, double* z,

double* rot psi, double* rot theta, double* rot phi);

void make mountains();

void genstripe(Icoord xi,Icoord yi,Icoord x2,Icoord y2);

void update vertical scale{int x origin, int y origin, float value);

void update_horizonta! scale(int x origin, int y origin, float value);

#encif /* ifndef VISUALS H */

/* visuals.c */

#include "visuals.h"

#include "aerodata.h"

#define MIDDLE X (DELTA X/2)

#de=ine_ MIDDLE--Y (DELTA Y/2_

#define SCALE lENGTH 20

#define GRID SIZE i00000

#define max _nt 500000

#define mtn-dist 200000

_define mtn-left i00000

/* Define bit masks to determine which switches are

activated on the flight box _/
_define Sl Ox00@!

#define $2 0x0002

#define $3 0x0004

_define $4 0x0008

#define $5 0xO010

#_cfine $6 0x0020

#define $7 0x0040

#define $8 0x0080

#define $9 0x0100

#define SI0 0x0200
#define Sl! 0x0400
#define S12 0x0800
#define S13 0xl000
#define S14 0x2000
#define SIS 0x4000
#define SI6 0xS000

int GRID;
int DELTAX, DELTAY;

/* Define the origins for the control deflection indicators */

int control defs x orig[] = {15, 25, 15, i0}; /* aileron, elevator, */

int control-defs y orig[] = {33, I0, 8, i0}; /* rudder, throttle */

float aspect_ratio;

Tag VECTOR;

/_ startgraphics_ contains the calls to initialize the graphics */
/* environment, define the colors and create the graphics */

/* objects for instancing. */

void startgraphics_(int _ win_orig_x, int* win_orig_y, int* win width,

int* win height, int* gridcol, double *glideslope)

{

/* GRID is an index into the color table, where the custom

definitions will begin. This is necessary since different

machines have different amounts of color table space

available, and the regions that are already in use change

accordingly */

GRID = *gridcol;

/_ the width and height of the graphics window is requested

from the sim: */

DELTA X = *win width;

DELTA_Y = *win_height;

/* the aspect ratio of the window is calculated for the

call to perspective() */

aspect ratio = (float)DELTA_X/DELTA_Y;

/* define where the graphics window will appear */

prefposition(*win_orig_x, *win_orig_x + DELTA_X,

_win_orig_y, *win_orig_y + DELTA_Y);

/* open the graphics window, and give it a title */

winopen("Flight scene");

/* define the matrix mode _/

m_ode(MIflEWING) ;

/* enable double buffering */

doublebuffer();

/* set up color map mode */

cmode();

9

/* apply the initialization calls to the

graphics enviromment */

gconfig (;

/* associate red, green, and blue values

to the custom elements of the color table */

mapcolor (GRID, 170, 170, 170) ;

mapcolor (GRASS, 30, 105, 0) ;

mapcolor (MYRED, 255, 20, 20) ;

mapcolor (SKY, i0, 20, 160) ;

mapco!or (HUD CLR, 50, 255, 0) ;

mapcolor (ASP._NkLT, i00, I00, I00) ;

mapcolor (purp!el, 150, 80, 64) ;

mapcolor (purple3, 75, 40, 32) ;

mapcolor (grey0, 224, 224, 224) ;

mapco!or (skid, 28, 28, 28);

mapcolor (poleclr, I0, i0, i0) ;

mapcolor (yellow, 255, 255, 0) ;

/* define a dotted line style for the negative

rungs of the pitch ladder */

deflinestyle(l,0x6666);

de_ne the world objects */

make_world_objects(glideslope);

/* define the HUD cverlay objects */

mane_HUD objecns();

/* define the mountain objects */

make mountains();

/" make world objects defines the graphics objects that will /
/* be instanced to create the outside scene. For example, */

/* the ground plane, hangars, runways, etc. "/

void make_world objects(double *glides!ope)

{
long point0[2], pointl[2];

int i, j, x, y;

float x_orig, y orig, del_x, del_y, del_h;

float up, out, spacing;

Coord xl, yl, zl, z2;

float v[4] [3] = { /* this is the ground */

-500000.0, -500000.0, 0.0 ,

500000.0, -500000.0, 0.0 ,

=00000.0 500000 O, 0 0 ,
-500000.0, 500000.0, 0.0 };

float rnwy[4] [3] = { /* runway */

{ -i00.0, 0.0, 0.0},

!00.0, 0.0, 0.O},

{ IO0.C, 8500.0, 0.0},

{ -!00.0, 8500.0, 0.0}};

I0

Scoord parray[] [2]:{

5, 8100,

-7, 8090,

-35, 7700,

-30, 7300,

-4, 6200,

I, 6150,

30, 7230,

36, 7780,

};

/* tire marks */

float hangarl[] [3] = {

{0.0, O.O, 0.0},
{350.0, 0.0, 0.0},
{350.0, 0.0, -180.0

{175.0, 0.0, -220.0

{0.0, 0.0, -180.0}

};

/* hangar panel */

float hangar2[] [3] : { /* hangar panel */

{0.0, -1026.0, 0.0 },

{0.0, 0.0, 0.0 },

{0.0, 0.0, -180.0 },

{0.0, -1026.0, -180.0 }

};

float hangar3[] [3] = { /* hangar panel */

{O.O, -1026.0, -180.0 },

{0.0, 0.0, -180.0 },

{175.0, 0.0, -220.0 },

{175.0, -1026.0, -220.0 }

float hangar4[] [3] = { /* hangar panel */

175.0, -1026.0, -220.0 },

175.0, 0.0, -220.0 },

350.0, 0.0, -180.0 },

350.0, -1026.0, -180.0 }

};

float hangar5[] [3] = (/* hangar panel */

350.0, -1026.0, -180.0 },

350.0, 0.0, -180.0 },

350.0, 0.0, 0.0 },

350.0, -!026.0, 0.0 }

};

float hangar6[] [3] = { /* hangar panel */

{0., -1026., O. },

{0., -1026., -180. },

{175.0, -1026.0, -220.0 },

{350.0, -1026.0, -180.0 },

{350.0, -1026.0, 0.0 }

};

float blimp2[] [3] : { /* blimp hangar panel */

{0., I00., 0.},

{0., ii00., 0.},

{i00., i050., -200.},

{i00., 150., -200.}

l!

};

float blimp3[] [3] = { /_ blimp hangar panel */

{i00., 150., -200. },

{i00., 1050., -200.},

{200., i050., -200.},

{200., 150., -200.}

};

float blimp4[] [3] = { /* blimp hangar panel */

{200., 150., -200.},

{200., 1050., -200.},

{300., II00., 0.},

{300., I00., 0}

};

float blimp5[] [3] = { /* blimp hangar panel */

{i00., 1200., 0.},

{200., 1200., 0.},

{200., I050., -200.},

{i00., 1050., -200.}

};

float blimp6[] [3] = (/* blimp hangar panel */

{I00., 1200., 0.},

{I00., 1050., -200.},

{0., Ii00., 0.}

};

float blimp7[] [3] = {
{200., 1200., 0.},

{300., I!00., 0.},

{200., i050., -200.}

};

/* blimp hangar panel */

/* define the GROUND OBJ graphics object: the large green

square 'world,' w_rh a grey grid for visual motion cue */

makeobj (GROUND OBJ);

rotate(900,Tx');

color(GRASS);

bgnpolygon();
v3f(v[0]);

v3f(v[l]);

v3f(v[2]);

v3f(v[3]);

enapclygon() ;

color(GRID);

point0[i] = -GRID SIZE;

pointl[l] = GRID SIZE;
for (i = -GRID SIZE; i <= GRID SIZE; i+= i0000) {

point0[0] = i;

pointl[0] = i;

bgnline();

v2i(point0);

v2i(pointl);
endline();

}
point0[0] = -GRID SIZE;

pointl[0] = GRID-SIZE;

12

for (j = -GRID SIZE; j <= GRID SIZE; j+= I0000) {

point0[l] =-j;

pointl[l] = j;

bgnline{);

v2i(point0);

v2i(pointl);

endiine();

}
cioseobj ();

/_ define the RLFSZ_AY graphics object: two grey rectangles

that will be the runways */

makeobj(RUNWAY);

color(ASPHALT);

bgnpolygon();

v3f(rnwy[0]);

v3f(rnwy[l]);

v3f(rnwy[2]);

v3f(rnwy[3]);

endpolygon();

color(GRID);

rectfs(500, -800, 700, 8400);

closeobj ();

/_ define the STRIPES graphics object: all of the runway

markings for 36L */

makeobj (STRIPES);

/_ Tire marks */

color(skid);

polf2s(8,parray];

color (GRID) ;

for (y = 450; y < 8000; y+=350)

rectfs (-i,y,2,y+lS0) ;

rectfs (72,0,75,8500) ;

rectfs (-72,0,-75, 8500) ;

for (x=8; x<=53; x+ = 15]

genstripe (x, 10,x+10, 150) ;

for (x=38; x<=58; x+ = i0)

genstripe (x,500,x+5,575) ;

genstripe (38,1000,63,1150);

genstripe (38,1500,43,1575);

genstripe (38, 1500, 43,1575) ;

genstripe (48, 1500, 53, 1575] ;

genstripe (38,2000,43,2G75) ;

genstripe (48,2000,53,2075) ;

genstripe (38,2500,43,2575) ;

genstripe (38,3000, 43, 3075) ;

cicseob3 () ;

/* center stripes

/* long side stripes

/* 4 big ones

/* 3 small ones

/* 1 big fat one

/* 2 */

/* 2 */

/* 1 *I

I* 1 *I

/* set up the geometry for the glideslope indicating

"telephone poles;" convert all angles to radians */

out = 5.0/57.296; /* included angle between the two rows */

up = {*g!ides!ope)/57.296; /* glide_slope angle */

spacing = 250.0; /* distance between each pole */

xl : x_orig : 0.0; /* x coordinate of the touchdown point */

y! = y orig = 8000.0; /* y coordinate of the touchdown point */

z! = z_ = 0.0; /* z coordinate of the touchdown point */

*/

,/

*/

*/

./

13

/_ deltas between each pole */

del x = spacing*sinf(out);

del_y = spacing*cosf(out);

del h : del y*sinf(up);

/* increment x and y to start drawing poles away

from the touchdown point */

x! +: del x;

y! += del_y;

/* create the POLES graphics object: the glideslope indicating

"telephone poles" */

makeobj (POLES);

color(poleclr);

for (i = 0; i < i0; i++) {

move(xl, yl, zl); /* move the graphics 'pen' */

z2 -= del h; /* positive z is down */

draw(xl, yl, z2); /* draw a pole */

move(-xl, yl, zl); /* move to the other side */

draw(-xl, yl, z2); /* draw the opposite pole */

xl += del x; /* increment x for next pole's base */

yl += de!_y; /* increment y for next pole's base */

}
closeobj ();

/* create the HANGAR graphics object: a P-3 hangar that gets

instanced twice */

makeobj (_%LANG_R) ;

color (skid) ;

rectfs(-!00, I00, 450, -1126) ;

color (ASP.U_LT) ;

poll(5, hangarl);

color(grey@);

pclf{4, hangar2);

polf(4, hangar4);

color(skid);

poll(4, hangar3);

closeobj ();

/* create the BLIMP graphics object: the blimp hangar */

makeobj (BLIMP);

color(ASPHALT);

polf(4, blimp2) ;

coior(skid);

po!f(4, blimp3);

rectfs(-100, 1300, 400, -i00);

color(grey0);

polf(4, blimp4);

cclor(poleclr);

poll(4, blimpS);

color(ASPHALT);

Doll(3, blimp6);

poll(3, blimpT);

clcseobj ();

/_ make HUD_objects creates the graphics objects for the */

14

/* heads-up-display (HUD) overlay symbology */

void make HUD objects()

{
char text buffer[32];

char *heading_num[] = {

"33", "34", "35","00","01","02","03","04","05","06",

"07", "08", "09","I0","II","12","13","14","15","16",

"17", "18", "19", "20", "21", "22", "23", "24","25","26",

"27", "28", "29", "30", "31", "32", "33","34","35","00",

"01", "02", "03" };

char *ladder num[] = {

"-9@", "-80", "-70", "-60", "-50", "-40", "-30",

"-20", "-i0", "i0", "20", "30", "40", "50", "60",

"70", "80", "90"};

float local_y = -162.5;

int i, j, x, y;

/* define the center of the window in window coordinates */

x = 75;

y = 50;

/* define the FPM graphics object: the velocity vector */

makeobj (FPM) ; /* Flight Path Marker (velocity vector) */

pushmatrix() ;

maketag (VECTOR) ;
trans!ate(0.0, 0.0, 0.0);

move2s (x+2,y) ; draw2s (x+l,.y) ; /* Draw Velocity Vector */

draw2s(x,y_l) ; draw2s (x,y+2) ;

move2s(x-2,y) ; draw2s (x-!,y) ;

move2s(x,y+l) ; draw2s(x-l,y) ;

draw2s (x,y-l) ; draw2s(x+l,y) ;

popmatrix() ;

c!oseobj () ;

/* define the PTCH LDR graphics object: the pitch ladder */

makeobj (PTCH LDR);
_=0;

/* make lines dotted for the negative pitch rungs */

setlinestyle i);

/* draw and label the ma]or negative rungs: */

for (i= -9; i<0; i+-}

move2i(60

draw2i(60

draw2i(70

meve2i(80

draw2i{90

draw2i(90

52_i'25

50_i'25

50+i'25

50_i'25

50_i'25

52+i'25

cmov2 (53, 50_i'25)

charstr(ladder nmm[j]) ;

cmov2 (92, 50+iZ25) ;

charstr(ladder nmm[j]) ;
_-+;

; /* draw one side of the rung */

; /* draw the other side */

/* label one side */

/* label the other side */

/* draw the negative minor rungs between the major ones */

15

for (i= 0; i<9; it+){

move2 (65, local_y) ;

draw2 (70, local_y) ;

move2(80, local_y) ;

draw2(85, local_y) ;

local y += 25;

};

/* draw the positive pitch rungs with solid lines */

setlinestyle(0) ;

/* draw the zero-rung, or horizon line */

move2i(50, 50) ;

draw2i(70, 50) ;

move2i(80, 50) ;

draw2i(i00,50) ;

/* draw and label the)ositive major rungs */

for (i= 1 i<=9; i++)

move2i 60, 48+i'25 ; /* draw left side */

draw2i 60, 50+i_25 ;

draw2i 70, 50-i'25 ;

move2i 80, 50_i'25 ; /* draw right side */

draw2i 90, 50+i'25 ;

draw2i 90, 48+i'25 ;

cmov2i 54, 48+i'25 ; /* label left side */

charstr(ladder ntum j) ;

cmov2(92, 48+i_25) /* label right side */

charstr(iadder num[] ;

j÷*;

}

/_ draw positive minor rungs between the major ones */

for (i = 9; i<18; i+_){

move2 (65, local_y) ;

draw2 (70, local y) ;

move2 (80, local y) ;

draw2 (85, local_y) ;

local y += 25;

}
closeobj () ;

/* define the HDG SCL graphics object: the heading scale,

basically a horizontal tape strip that gets translated

left and right according to compass heading, and clipped

into a small box at the bottom of the window */

makeobj (HDG SCL) ;

/" Major-tics, every i0 degrees "/

for (i=0; i<=420; i÷=10){

move2i (i, 5'J;

draw2i(i, 8) ;

}
/_ Minor tics, every i0 degrees, off-set from

major tics by 5 degrees */

for (i=5; i<=415; i+=10) {

move2i (i, 5) ;

draw2i (i, 7:,;

/_ Heading markers "/

for (i=0; i<42; i-=!){

16

cmov2(8.5+10*i,9);

chars_r(heading hum[i]);

}
closeobj ();

/* define the STATIC OBJ graphics object: all of the static

stuff that only needs to be drawn once, such as the water

line, heading pointer, altitude and airspeed boxes, etc. */

makeobj(STATIC_OBJ);

/* Water Line */

move2i(75-4, 50) ;

draw2i (75-2, 50) ;

draw2i(75-1, 50-2) ;

draw2i(75, 50) ;

draw2i(75+1, 50-2) ;

draw2i(75+2, 50) ;

draw2i(75+4, 50) ;

/* _A__tude and airspeed boxes */

rect(30, 60, 45, 65) ;

rect(105, 60, 120, 65) ;

/* Heading pointer */

move2i ',74,3) ;

draw2i (76, 3) ; draw2i (75, 5) ; draw2i (74, 3) ;

/_ Put the text labels for the alpha and dynamic pressure */

/* digital readouts */

sprintf[text buffer, "alpha:");

cmov2(3, 95)7

charstr{text buffer);

sprintf(text buffer, "qbar:") ;

cmov2(3, 90) ;

charstr(text buffer) ;

/* Draw static parts of control deflection indicators */

/* aileron */

move2i(control defs x orig[0], control defs y orig[0] + I);

draw2i(control defs x orig[0], control defs y orig[0]};

draw2i(control defs x orig[0]_SCThLE LENGTH, control defs y orig[0]);

draw2i(control--defs x orig[0]+SCTkLE--LENGTH, controlldefs y orig[0] + I);

/* elevator */

move2i(control_defs x orig[l] -I, control defs y orig[l]) ;

draw2i(controi defs x orig[l], control defs y orig[l]);

draw2i(control-defs x orig[l], control-defs y orig[I]+SCALE LENGTH);

draw2i(control-defs x orig[l] -I, cont?ol defs y orig[!]+SCALE_LENGTH);

/* rudder */

move2i(control defs x orig[2], control defs y orig[2] +I);

draw2i(conzrol-defs x orig[2], control-defs y orig[2]);

draw2i(controi-defs x orig[2]+SCTkLE LENGTH, control defs y orig[2]);

draw2i(contro!--defs x orig[2]+SCALE_LENGTH, control_defs y orig[2] +i);

/* throttle */

move2i(control defs x orig[3] -i, control defs y orig[3]);

draw2i(control-defs x orig[3], control defs y orig[3]);

draw2i " _ .,<_o__o= dens x orig[31 control-defs y oria[3]+SCT<LE LENGTH);

draw2i(contro!-defs x orig[3] -I, cont[ol defs y orig[3]+SCALE LENGTH);

closeobJ I);

]7

/* define the air-to-air cross TARGET object */

makeobj (TARGET) ;

color (ASPHALT) ;

rectf(-7.5, -1.25, 7.5, 1.25);

rectf(-l.25, -7.5, 1.25, 7.5);

closeobj () ;

/* define the light on each arm of the cross as a

separate graphics object to make it efficient to
turn them on and off */

makeobj(LIGHT I);

color(yell_w);

rectf(-l.0, 5.25, 1.0, 7.25);

closeobj();

makeobj (LIGHT 2);

color(yell[w);

rectf(5.25, -I.0, 7.25, 1.0);

c!oseobj();

makeobj (LIGHT 3);

color(yellow);

rectf(-l.0, -7.25, i.0, -5.25);

closeobj ();

makeobj(LIGHT 4);

co!or(yell[w);

rectf(-7.25, -I.0, -5.25, 1.0);

c!oseobj ();

/* drawframe is the routine that actually draws each graphics frame */

/* in the window and is called by the flight simulation after each */

/* round of several integration steps. The graphics transformation */

/* matrix is manipulated to put the ouside objects in the correct */

/* perspective for the current aircraf_ position, then the world */

/_ objects are instanced to render them to the frame. The HUD */

/* s ymbology is then manipulated and updated on the screen. */

void drawframe (double" X, double* Y, double* Z, double* psi, double* theta,

double* phi, double *V, double* zdot, double* alpha,

double* beta, double *qbar, int* AccuracyFlag,

inr* dic, float* del_psi, float* del_theta, int* light,

float *control defs)

{
static float local psi, mach, vk;

static float dx, dy;

static char text buffer[32];

static int light_vec[] = {0, LIGHT_l, LIGHT_2, LIGHT_3, LIGHT_4};

static float targetx, target_y;

pusb_atrix();

perspectiveI400, aspect_ratio, i0.0, 400000.0);

my_viewing_transform(X, Y, Z, psi, theta, phi);

color (SKY) ;

]8

clear();

/* Call world objects */

callobj (GROUND OBJ);

callobj (MTN RANGE);

trans!ate(0.0, -20000.0, 0.0);

pushmatrix();

translate(2100.0,

callobj (HANGAR);

translate(-470.0,

callobj (HANGS_R);

translate(-3000.0,

callobj(BLIMP);

popmatrix();

5200.0, 0.0) ;

0.0, 0.0) ;

-1200.0, 0.0) ;

callobj (RUNWAY) ;

callobj (STRIPES) ;

if ($6 & *dio)

callobj (POLES) ;

popmatrix () ;

ortho2 (-0. 5, 150.5, -0.5, 100.5);

/* Up and away task marker: */

if(*light) {

pushmatrix();

translate(75.0, 50.0, 0.0);

rot(*phi, 'z');

targe__x : (*del_psi)*2.5;

target_y = (*del theta)*2.5;

translate(target_x, target_y,
calIobj(TARGET);

callobj(light vec[*light]);
color(HUD CLR);

move2(0,0T;

draw2(-target x, -target_y);
popmatrix();

}

0.0);

/* Call HUD objects */

color(HUD CLR) ;

dx = ('beta)*2.5;

dy : -(*alpha)*2.5;

editobj (FPM) ;

obj replace (VECTOR) ;

translate(dx, dy, 0.0) ;

closeobj () ;

callobj (FPM) ;

pushviewport (_ ;

pushmatrix () ;

scrmask(.3*DELTA_X, .7*DELTA X,
translate (75, 50, 0) ;

rot(*phi, 'z') ;

translate(0, -(*theta)*2.5, 0);

translate(-75, -50, 0) ;

callobj (PTCH LDR) ;

popmatrix() ;

popviewport () ;

.2*DELTA Y, .8*DELTA Y);

19

local_psi : (float) *psi;

while (local psi < 0.0) local psi += 360.0;

pushviewport();

push_matrix();

scrmask(.4*DELTA X, .6*DELTA_X, 0, .2*DELTA_Y);

translate(35.0-1_cal psi, 0, 0);

callobj (HDG SCL);

popmatrix(),

popviewport();

callobj (STATIC OBJ) ;

/* Update digital displays */

aerodata(Z, V, &mach, &vk);

/* Altitude (ft) */

sprintf(text buffer,"%.0f",- (*Z)) ;

cmov2(31, 61) ,

charstr(text buffer);

/* Airspeed (knots true) */

sprintf(text buffer."%.0f", vk) ",
cmov2(106,61T;

charstr(text buffer);

/* Vertical speed (ft/min) */

sprintf(text buffer,"%.0f", -(*zdot)*60.0);

cmov2(31,57);

charstr(text buffer);

/* Mach number */

sprintf(text buffer, "%4.2f", roach) ;

cmov2(106,57T;

charstr(text buffer) ;

/* Draw pointers on control deflection indicators */

/" aileron */

update horizontal scale(control defs x orig[0],
control defs y orig[0],

contro!--defs[0]);

/* elevator */

update vertical_scale(control defs x orig[l],

control defs y orig[l],

control defs[l]);

/_ rudder */

update_horizontal_scale(control defs x orig[2],

control defs y orig[2],
control-defs[2]);

/7 commanded throttle */

update vertical scale(control_defs x orig[3],
control defs y orig[3],

control defs[3]);

/" show the actual thrust */

.... _ccntrol defs x orig[3] - _, control defs y orig[3],

ccntrol-defs x orig[3],

control defs y orig[3] + (int) (control defs[4}*SCALE LENGTH));

2O

/* Digital displays for alpha and dynamic pressure;

green if inside table-look-up envelope, red if outside */

if (! (*AccuracyFlag)) color(MYRED); /* make follwing text red */

/* Alpha */

sprintf(text buffer, "%.If", (_alpha)) ;

cmov2 (15, 95) ;

charstr(text buffer);

/* Dynamic Pressure */

sprintf(text buffer,"%.If", (*qbar));
cmov2(15,90)7

charstr(text buffer);

swapbuffers() ;

/* stopgraphics_ closes the graphics gracefully */

void stopgraphics ()

{

gexit();

}

/* my_viewing transform manipulates the graphics transformation */

/* matrix through the proper operations so that it will translate */

/* and rotate the world objects into the proper perspective form */

/* the pilot 's point of view */

void my viewing transform(double* x, double* y, double* z,

double* rot psi, double* rot theta, double* rot phi)
{

Angle apsi, atheta, aphi;

float sine, cosine;

static Matrix mat = {i.0, 0.0, 0.0, 0.0,

0.0, 1.0, 0.0, 0.0,

0.0, 0.0, 1.0, 0.0,

0.0, 0.0, 0.0, 1.0};

aDsi. = (A_ngle) (*rot_psi_IO. _'._;,

a:heta = (A_ngle) (*rot theta*10.0) ;

aphi = (Angle) (*rot--phi*i0.0) ;

gl_sincos(-aphi, &sine, &cosine) ;
matt0] [0] = cosine;

matt0] [i] = -sine;

matt1] [0] = sine;

matt1] [i] : cosine;

mu!tmatrix{matl ;

matt0] [0] = 1.0;

matt0] [I] = 0.0;

mat[l] [0] = 0.0;

21

gi_sincos(atheta, &sine,
mat[l] [11 = cosine;

mat[i] [2] = -sine;

mat[2] [i] = sine;

mat [2] [2] = cosine;

multmatrix (mat) ;

mat[l] [i] = 1.0;

mat[l] [2] = 0.0;

mat[2] [i] = 0.0;

gl sincos(apsi, &sine,

mat[O] [0] = cosine;

mat[O] [2] = -sine;

mat [2] [0] = sine;

mat [2] [2] = cosine;

multmatrix (mat) ;

mat[O] [2] = 0.0;

mat[2] [0] = 0.0;

mat[2] [2] = !.0;

translate (- (*y) , *z, *x) ;

&cobine) ;

&cosine) ;

/* make moun:ains defines the graphics objects to draw the simple _/

/Y silhouette mountains in the distance */

void make mountains()

{
:egister int x,y;

Matrix mtn_range2;

static long world[] [3] : {

{max int,O,max int},

{-max_in_, O, max_in_ },
{-max int, O,-max int},

{max int,O,-max lnt},

};
static long skyl[] [3] = {

{-max int,O,-max int},

{-max--int, O,max int},

{$,max int, O},

};
static long sky2[] [3] = {

{max lnt, O,-max int},

{max-int,O,max _nt},

{O, max int, 0},

static long sky3[] [3] = {

{-max int, O,-max int},

{max_int, O,-max [nt},
{@,max int, 0},

};
s=atic long sky4[] [3] = {

{-max £nt, O,max int},

{max _nt, O,max _nt},

22

};

{0,max int, 0},

static long north men litel [][3] = {

{-mtn left-15[00,O,-mtn dist-5000},

{-100000,8500,-mtn distTS000},

{-S0000,0,-mtn dis_-5000},

};

static long north mtn fire2 [][3]
{-90000,0,-mt_ di_t-5000},

{-70000,12000,-mtn dist-5000},

{-50000,5000,-mtn dist-5000},

};

= {

static long

{-70000,

{-4O000,

{-2OOOO,
};

north mtn lite3 [][3]

5000,Tmtn-dist-5000},

21000,-m_ dist-5000},

5000,-mtn dist-5000},

-- {

static long north mtn life4 [][3] =
{-30000,5000,Umtn-dist-5000},

{0,22500,-mtn dis_-5000},

{50000,5000,-m<n dist-5000},

};

static long north mtn lite5 [][3]

{12000,10000,Tm:n-dist-5000},

{28000,19000,-m_n-dist-5000},

{37300,17500,-mtn-dist-5000},

};

-- {

static long north mtn life6 [] [3]

{12000,10000,Um_n-dist-5000},

{50000,22000,-mtn dist-5000},

{80000,5000,-mtn dist-5000},

};

-- {

static long north m[n dark0 [][3]
{-mtn left-20[00,[,-mtn dist},

{-mtn-left, 6000,-mtn dist},

{mtn Teft, 6000,-mtn dist},

{mtn left+20O00,0,-mtn dist},

};

static long north mtn darkl [][3]
{-100000,50007-mt_ dist},

{-85000,10000,-m<n dist},

{-70000,5000,-mtn dist},

};

static long north mtn dark2 [] [3]
{-60000,5000,Um<n-dist},

{-25000,20000,-mt_ dist},

{0,5000,-mtn dist}7

};

= {

23

static long north mtn dark3

{-10000,5000,Tmtn-dist},

{5000, i7500,-mtn dist},

{30000,5000,-mtn-dist},

};

static long north mtn dark4
{i5000,5000,-_tn dist},

{30000,15000,-mtn dist},

{50000,10000,-mtn-dist},

};

static long north mtn dark5

{1500O,5000,-_tn dist},

{62000,20000,-mt_ dist},

{100000,5000,-mtn--dist},

};

[][3]

[] [3]

[] [3]

= {

= {

= {

makeobj (MTN RANGE);

pushmatrix_);

rotate(-900, 'x');

color (purplel);

polfi (3,north mtn litel);

poifi (3,north-mtn-lite2);

polfi (3,north-mtn--lite3);

polfi (3,north--mtn-lite4);

polfi (3,north--mtn-liteS);

polfi (3,north-mtn-lite6);

color (purple3);

po!fi (4,north mtn dark0);

polfi (3,north-mtn--dark!);

po!fi (3,north mtn dark2);

polfi (3,north-mtn-dark3);

polfi (3,norZh mtn dark4);

polfi (3,north-mtn-dark5);

popmatrix();

c!oseobj ();

/* Due te the two axes of symmetry for runway markings, genstripe */

/* will mirror each rectangle to make a total of four stripes for */

/* each one passed to it */

void genstripe (icoord xl,Icoord yl,Icoord x2,Icoord y2)

{
rectfs (xl,yl,x2,y2);

rectfs (-xl,yi,-x2,y2);

rectfs (xl,8500-yl,x2,8500-y2);

rectfs (-xl,8500-yl,-x2,8500-y2);

return;

}

24

/_ update_vertical_scale is used to draw the pointer on the */

/* commanded thrust and elevator position indicators */

void update_vertical sca!e(int x_origin, int y_origin, float value)

{
int y_val;

y_val = y_origin + (int) (value*SCALE_LENGTH);

move2i(x_origin, y val);

draw2i(x_origin + [, y_val + I);

draw2i(x origin + I, y val - i);

draw2i(x_origin, y_valT;

return;

}

/* update_horizontal scale is used to draw the pointer on the */

/* rudder and elevator position indicators */ ..

void update_horizontal_sca!e(int x_origin, int y_origin, float value)
{

int x val;

x_v_± = x_origin + (int) (value*SCALE LENGTH);

move2i(x val, y_origin) ;

draw2i(x val + i, y_origin - I);
draw2i(x--val - i, y origin - i) ;

draw2i(x--val, y_origin) ;

return;

}

